ANNUAL REPORT FOR 2004

Hanging Rock Creek Stream Mitigation Site Avery County WBS Element 34402.4.1 TIP No. R-2237WM

Prepared By: Office of Natural Environment & Roadside Environmental Unit North Carolina Department of Transportation March 2005

Summary

The following report summarizes the stream monitoring activities that have occurred during the Year 2004 at the Hanging Rock Stream Mitigation Site in Avery County. This site was designed and constructed during 2003 by the North Carolina Department of Transportation (NCDOT). This report provides the monitoring results for the first formal year of monitoring (Year 2004). The Year 2004 monitoring period was the first of five scheduled years for monitoring on Hanging Rock Creek.

Based on the overall conclusions of monitoring along Hanging Rock Creek and its associated tributary, the Hanging Rock Site has met the required monitoring protocols for the first formal year of monitoring. Localized areas of active bank scour and erosion exist; however, immediate stabilization is not warranted at this time. The North Carolina Department of Transportation will continue stream monitoring at the Hanging Rock Creek Site for 2005.

Based on information obtained from the USGS, the Hanging Rock Creek Site has met the required hydrologic monitoring protocols of two bankfull events. Biological and vegetative sampling is being conducted by NCDOT as part of the overall monitoring activity for this site. Data from biological and vegetative monitoring is not included in this report and will be submitted separately by NCDOT.

1.0 INTRODUCTION

1.1 **Project Description**

The following report summarizes the stream monitoring activities that have occurred during the Year 2004 at the Hanging Rock Stream Mitigation Site. The site is located adjacent to NC 184 and SR 1337 (Dobbins Road) in the eastern portion of Avery County (Figure 1). It is approximately 1 mile south-southeast of Banner Elk and nearly 14 miles southwest of Boone. The Hanging Rock Site was constructed as one of three projects to provide mitigation for stream impacts associated with Transportation Improvement Program (TIP) number R-2237WM in Avery County.

The mitigation project covers approximately 2,500 linear feet of channel length (facing downstream) of Hanging Rock Creek, and approximately 250 linear feet of channel length on an unnamed tributary. Design and construction was implemented during 2003 by the North Carolina Department of Transportation (NCDOT). Stream restoration involved the installation of rootwads and various rock structures, and sloping the adjacent streambanks to reduce overall erosion. It also included the installation of native vegetation.

1.2 Purpose

According to the mitigation plan report (NCDOT, 2001), the objectives for this mitigation site were to improve water quality, riparian quality and stability, and fisheries habitat associated with Hanging Rock Creek and its unnamed tributary. The following specific objectives were proposed:

- Restore the channel to a natural and stable form,
- Improve floodplain and wetland functionality,
- Reduce sediment load discharge to the Elk River,
- Improve the trout fishery and natural aesthetics of the stream corridor,
- Acquire mitigation credits for other unavoidable impacts to streams within the same HUC (06010103).

Successful stream mitigation is demonstrated by a stable channel that does not aggrade or degrade over time. It is also demonstrated by reduced erosion rates, the permanent establishment of native vegetation, and bed features consistent with the design stream type. Results of stream monitoring conducted in 2004 at the Hanging Rock Site are included in this report.

Activities in 2004 reflect the first formal year of monitoring following the restoration efforts. Included in this report are analyses on stability (primarily the longitudinal profile and cross sections) and site photographs.

1.3 Project History

Fall 2003	Construction Completed.
Fall 2003	Site Planted
Spring 2004	NCDOT Planted Live Stakes and Bare Rooted Trees
October 2004	Stream Channel Monitoring (1 yr.)

Significant rainfall events in September 2004 resulted in Hanging Rock Creek reaching stages above bankfull. These events caused the erosion of streambanks and undermined rock structures throughout the restored channel, principally in a section of the main channel immediately downstream of the Dobbins Road culvert. Action to correct the damage was completed by the time of monitoring.

1.4 Debit Ledger

The entire Hanging Rock Site was used for TIP No. R-2237WM to compensate for unavoidable stream impacts related with roadway construction. This project generated 2,753 linear feet of stream credits.

2.0 STREAM ASSESSMENT

2.1 Success Criteria

The success criteria, as defined by federal guidelines for stream mitigation, includes the following main parameters: no less than two bankfull events for the five-year monitoring period, reference photos, plant survivability analyses, and channel stability analyses (USACE, 2003). Biological data was not required; however, benthic monitoring was conducted as part of pre-construction sampling.

Natural streams are dynamic systems that are in a constant state of change. Longitudinal profile and cross section surveys will differ from year to year based on changes in the watershed. Natural channel stability is achieved by allowing the stream to develop a proper dimension, pattern, and profile such that, over time, channel features are maintained and the stream system neither aggrades nor degrades. A stable stream consistently transports its sediment load, both in size and type, associated with local deposition and scour. Channel instability occurs when the scouring process leads to degradation, or excessive sediment deposition results in aggradation (Rosgen, 1996). The following surveys were conducted in support of the monitoring assessment:

• Longitudinal Profile Survey. This survey addressed the overall slope of the reach, as well as slopes between bed features. The bed features are secondary delineative criteria describing channel configuration in terms of riffle/pools, rapids, step/pools, cascades and convergence/divergence features which are inferred from channel plan form and gradient. The surveys are compared on a yearly basis to note and/or compare aggradation, degradation, head cuts, and areas of mass wasting. The longitudinal profile is expected to change from year to year. Significant changes may require additional monitoring.

Cross Section Surveys. These surveys addressed the following characteristics at various locations along the reach: entrenchment ratio, width/depth ratio, and dominant channel materials. The entrenchment ratio is a computed index value used to describe the degree of vertical containment. The width/depth ratio is an index value which indicates the shape of the channel cross section. The dominant channel materials refer to a selected size index value, the D50, representing the most prevalent of one of six channel material types or size categories, as determined from a channel material size distribution index.

2.2 Stream Description

2.2.1 Post-Construction Conditions

The mitigation of Hanging Rock Creek and its unnamed tributary involved the construction of j-hook vanes, single rock vanes, rock cross vanes, rootwad revetments, double wing deflectors and additional bank sloping. A rock cross vane was installed upstream of the NC 184 culvert to prevent bank erosion and to direct higher velocities into the center of the channel. A rootwad complex was installed in the apex of several bends with cover logs for habitat. Cross vanes were installed between glides and riffles. Throughout the entire reach the inner berm was maintained, enhanced, or created as channel modifications were made.

2.2.2 Monitoring Conditions

Hanging Rock Creek was initially classified as a C4 stream type according to the Rosgen Classification of Natural Rivers. The unnamed tributary was constructed as an E4. A total of eight cross sections (seven along Hanging Rock Creek and one along its tributary) were surveyed. For this report, only cross sections containing riffles were used in the comparison of channel morphology presented below in Table 1. Data shown in Table 1 includes one cross section chosen to represent a riffle section and minimum and maximum values for the riffle cross sections along the reach.

Variable	Hanging Rock Creek - Main Channel (Cross Sections #1, 3, 6, and 7)						
	Proposed	20	04	2005	2006	2006	
		Cross-Section #7	Min - Max				
Drainage Area (mi ²)	3.0	3.0	3.0				
Bankfull Width (ft)	21.5 - 22.3	23.1	23.6 - 40.9				
Bankfull Mean Depth (ft)	1.9 - 1.9	1.5	1.1 - 1.5				
Width/Depth Ratio	11.6 - 12.0	15.4	16.0 - 37.4				
Bankfull Cross Sectional Area (ft ²)	40.0 - 41.7	34.7	30.3 - 44.7				
Maximum Bankfull Depth (ft)	2.2 - 2.8	2.1	2.1 - 2.9				
Width of Floodprone Area (ft)	300	300	300				
Entrenchment Ratio	13.4 - 14.0	>5	7.3 - 12.7				
Slope	0.0059	0.0062	0.0062				
Particle Sizes (Riffle Sections)							
D ₁₆ (mm)		8.4	0.091 - 13.5				
D ₃₅ (mm)		22.8	0.24 - 22.8				
D ₅₀ (mm)		29.3	13.3 - 29.3				
D ₈₄ (mm)		57	35 – 57				
D ₉₅ (mm)		79	62 - 79				

Table 1. Abbreviated Morphological Summary (Hanging Rock Creek Site)

*Drainage Area, Floodprone Width, and Slope are averaged values only. No minimum/maximum values were referenced.

2.3 Results of the Stream Assessment

2.3.1 Site Data

The assessment included the survey of eight cross sections of the two streams and the longitudinal profile of Hanging Rock Creek and its tributary established by the NCDOT after construction. The length of the profile along Hanging Rock Creek was approximately 2,500 linear feet. The profile associated with the UT was approximately 255 linear feet. Six cross sections were established prior to the 2004 monitoring year. An additional cross section was added to the main channel, and one cross section was added along the UT. Cross section locations were subsequently based on the stationing of the longitudinal profile and are presented below. The locations of the cross sections and longitudinal profiles are shown in Appendix A.

- Cross Section #1. Hanging Rock Creek, Station 3+66.6, midpoint of riffle
- Cross Section #2. Hanging Rock Creek, Station 4+72.6, midpoint of pool
- Cross Section #3. Hanging Rock Creek, Station 4+95.6, midpoint of riffle
- Cross Section #4. Hanging Rock Creek, Station 6+26.6, midpoint of pool
- Cross Section #5. Hanging Rock Creek, Station 8+89.6, midpoint of pool
- Cross Section #6. Hanging Rock Creek, Station 13+38.6, midpoint of riffle
- Cross Section #7. Hanging Rock Creek, Station 17+75.6, midpoint of riffle
- Cross Section #8. Unnamed Tributary, Station 8+74.74, midpoint of run

Based on comparisons of design cross section data and Year 2004 monitoring data, all eight cross sections appear stable with little or no active bank erosion. Graphs of the cross sections are presented in Appendix A. Future survey data will vary depending on actual location of rod placement and alignment, however, this information should remain similar in appearance.

An estimate of bank erosion was taken at each cross section using the bank erodibility hazard index (BEHI) and calculating near-bank shear stress. The BEHI and near-bank shear stress evaluations indicated a bank erosion potential that ranged from moderate to very high. The very high scores are likely a result of newly constructed banks overlain with matting and will probably decrease once vegetation is established. These measurements will be taken once a year at the same time the monitoring surveys are completed. Permanent bank toe pins were installed at each cross section to insure the measurements were taken at the same location every year. Bank erosion data sheets are presented in Appendix B.

Pebble counts were also taken at each cross section as a means to determine the bed material at each cross section location. However, only pebble counts taken at riffle sections will be utilized to classify the stream. No existing data was available for Hanging Rock Creek or its tributary. The pebble counts taken during the Year 2004 monitoring period noted that the D_{50} (50 percent of the sampled population is equal to or finer than the representative particle diameter) for the riffle sections of Hanging Rock Creek was approximately 22.7 mm, which is indicative of a gravel-bed stream.

A chart depicting the particle size distributions for Hanging Rock Creek for the Year 2004 is presented below.

A longitudinal profile survey was conducted on a predetermined segment of Hanging Rock Creek. Bank stability was assessed during the cross section and longitudinal profile surveys. Two areas of active scouring were observed in 2004. Descriptions and evaluations of these areas are as follows:

Hanging Rock Creek (Main Channel)

- ◆ Station 7+55.6. Active scouring was noted around the rootwad on the left bank (facing downstream) in 2004. The scour did not appear to be compromising the structure. Establishment of vegetation should help to stabilize this area.
- Station 16+45.6. Bank undercutting was noted around a rootwad structure embedded in the left streambank. The structure, however, appeared stable. This area will be reassessed during the next monitoring period.

2.3.2 Climatic Data

Monitoring requirements state that at least two bankfull events must be documented through the five-year monitoring period. No U.S. Geological Survey (USGS) surface water gages exist on Hanging Rock Creek or its tributaries. A review of known USGS surface water gages identified one gage within 7 miles (11 kilometers) of the mitigation site. The gage is located 3 miles (5 kilometers) southwest of Sugar Grove, NC just off Watuaga River Road near Rominger Road.

The Watuaga River gage was utilized for this report since it is the only active gage station in North Carolina located in the Watuaga River Basin. The Watuaga River Gaging Station has a drainage area of 92.1 square miles. It is situated in USGS Hydrologic Unit 06010103. Datum of the gage is 2,607.84 feet above sea level NGVD29. Based on the drainage area associated with the gage, the correlated bankfull discharge according to the NC Rural Mountain Regional Curves (USACE, 2003) is between 2,000 and 4,000 cubic feet per second (cfs). A review of peak flows was conducted for the period between October 2002 and October 2004. According to the graph, there were four bankfull events occurring during this period, three of which were in August 2004. Three of these events exceeded 6,000 cfs, well above the bankfull discharge. The USGS graph depicting these peak flows is presented below.

3.0 OVERALL CONCLUSIONS

The Hanging Rock Creek Site has met the required monitoring protocols for the first formal year of monitoring. Localized areas of active bank scour and erosion existed in 2004; however, these areas should stabilize in upcoming years with the increased establishment of vegetation. No remedial actions are warranted at this time.

Based on information obtained from the USGS, the Hanging Rock Creek Site has met the required hydrologic monitoring protocols as it relates to bankfull events. Biological and vegetative monitoring is being conducted by NCDOT and will be included with this report.

4.0 **REFERENCES**

- North Carolina Department of Transportation (NCDOT), 2001. Mitigation Report for the Hanging Rock Creek Mitigation Site, Banner Elk, Avery County.
- Rosgen, D.L, 1996. Applied River Morphology. Wildland Hydrology, Pagosa Springs, Colorado.
- US Army Corps of Engineers (USACE), 2003. Stream Mitigation Guidelines. Prepared with cooperation from the US Environmental Protection Agency, NC Wildlife Resources Commission, and the NC Division of Water Quality.
- US Geological Survey (USGS), 2004. Real-time Data for USGS 03453000 Ivy River near Marshall, NC. <u>http://waterdata.usgs.gov/nc/nwis</u>.

APPENDIX A

CROSS SECTIONS AND THE LONGITUDINAL PROFILE COMPARISON

Cross-Section #1 (Riffle) Abbreviated Morphological Summary

	2004	2005	2006	2007	2008
Bankfull Cross Sectional Area (ft ²)	37.4				
Maximum Bankfull Depth (ft)	2.7				
Width of the Floodprone Area (ft)	300				
Bankfull Mean Depth (ft)	1.5				
Width/Depth Ratio	16.6				
Entrenchment Ratio	>5				
Bankfull Width (ft)	24.9				

Cross-Section #2 (Pool) Abbreviated Morphological Summary*

	2004	2005	2006	2007	2008
Bankfull Cross Sectional Area (ft ²)	91.8				
Maximum Bankfull Depth (ft)	5.8				
Bankfull Mean Depth (ft)	2.7				
Bankfull Width (ft)	34				

* According to the Rosgen Classification of Natural Rivers floodprone width, entrenchement ratio, and width depth ratio are not measured in pool, glide, or run features.

Cross-Section #3 (Riffle) Abbreviated Morphological Summary

	2004	2005	2006	2007	2008
Bankfull Cross Sectional Area (ft ²)	44.7				
Maximum Bankfull Depth (ft)	2.9				
Width of the Floodprone Area (ft)	300				
Bankfull Mean Depth (ft)	1.1				
Width/Depth Ratio	36.9				
Entrenchment Ratio	>5				
Bankfull Width (ft)	40.6				

Cross-Section #4 (Pool) Abbreviated Morphological Summary*

	2004	2005	2006	2007	2008
Bankfull Cross Sectional Area (ft ²)	41.6				
Maximum Bankfull Depth (ft)	3.9				
Bankfull Mean Depth (ft)	2.0				
Bankfull Width (ft)	20.8				

* According to the Rosgen Classification of Natural Rivers floodprone width, entrenchement ratio, and width depth ratio are not measured in pool, glide, or run features.

Cross-Section #5 (Pool) Abbreviated Morphological Summary*

2004	2005	2006	2007	2008
37.0				
3.8				
2.5				
14.8				
	2004 37.0 3.8 2.5 14.8	2004 2005 37.0	2004 2005 2006 37.0	2004 2005 2006 2007 37.0

* According to the Rosgen Classification of Natural Rivers floodprone width, entrenchement ratio, and width depth ratio are not measured in pool, glide, or run features.

Cross-Section #6 (Riffle) Abbreviated Morphological Summary

	2004	2005	2006	2007	2008
Bankfull Cross Sectional Area (ft ²)	30.3				
Maximum Bankfull Depth (ft)	2.2				
Width of the Floodprone Area (ft)	300				
Bankfull Mean Depth (ft)	1.1				
Width/Depth Ratio	25.0				
Entrenchment Ratio	>5				
Bankfull Width (ft)	27.5				

Cross-Section #7 (Riffle) Abbreviated Morphological Summary

	2004	2005	2006	2007	2008
Bankfull Cross Sectional Area (ft ²)	34.7				
Maximum Bankfull Depth (ft)	2.1				
Width of the Floodprone Area (ft)	300				
Bankfull Mean Depth (ft)	1.5				
Width/Depth Ratio	15.4				
Entrenchment Ratio	>5				
Bankfull Width (ft)	23.1				

Cross-Section #8 (Run) Abbreviated Morphological Summary*

2004	2005	2006	2007	2008
3.6				
1.1				
0.7				
5.1				
	2004 3.6 1.1 0.7 5.1	2004 2005 3.6	2004 2005 2006 3.6	2004 2005 2006 2007 3.6

* According to the Rosgen Classification of Natural Rivers floodprone width, entrenchement ratio, and width depth ratio are not measured in pool, glide, or run features.

APPENDIX B

BANK EROSION DATA SHEETS

			Bank									
Erod	libility Variable	Index	Erosion									
/			Potential			E	Bank Eros	ion Hazar	d Index			
Bank Height	t/Bankfull Height		2 4 1						Bank Erosi	on Potentia		
Study Bank Height (ft)	Bankfull Height (ft) A/B	V			28		Very Low	Low	Moderate	High	Very High	Extreme
A	В	1.0	VERY	1 1	Bank Height/	Value	1.0 - 1.1	1.11 - 1.19	1.2 - 1.5	1.6 - 2.0	2.1 - 2.8	>2.8
2.7'	2.7' 1.0		100		Bankfull Height	Index	1.0 - 1.9	2.0 - 3.9	4.0 - 5.9	6.0 - 7.9	8.0 - 9.0	10
Root Depth/	Bank Height			e	Root Depth/	Value	1.0 - 0.9	0.89 - 0.5	0.49 - 0.3	0.29 - 0.15	0.14 - 0.05	< 0.05
Root				riab	Bank Height	Index	1.0 - 1.9	2.0 - 3.9	4.0 - 5.9	6.0 - 7.9	8.0 - 9,0	10
Depth (ft)	CIA			Va.	Weighted	Value	100 - 80	79 - 55	54 - 30	29 - 15	14 - 5.0	<5.0
C		10	ENTIZEME	ility	Root Density	Index	1.0 - 1.9	2.0 - 3.9	4.0 - 5.9	6.0 - 7.9	8.0 - 9.0	10
o'	0			dib		Value	0 - 20	21 - 60	61 - 80	81 - 90	91 - 119	>119
Weighted Re	oot Density			E	Bank Angle	Index	1.0 - 1.9	2.0 - 3.9	4.0 - 5.9	6.0 - 7.9	8.0 - 9.0	10
Root					Surface	Value	100 - 80	79 - 55	54 - 30	29 - 15	14 - 10	<10
Density	D*(C/A)				Protection	Index	1.0 - 1.9	2.0 - 3.9	4.0 - 5.9	6.0 - 7.9	8.0 - 9.0	10
(%) D		10	EXTREME									
0%	0)		-	Bank	k Materials	and a second		2010			8 1 3	
Bank Angle					Bedrock (Bedrock banks	s have very	low bank ero	sion potentia	1)			
Bank	1			1	Boulders (Banks compo	sed of bould	lers have low	bank erosio	n potential)			
Angle		2			Cobble (Subtract 10 poi	nts. If sand/g	gravel matrix	greater than	50% of ban	k material, th	en do not ad	just)
(degrees)		3.0	Low		Gravel (Add 5-10 points	depending	on percentag	e of bank ma	aterial that is	composed o	of sand)	
30°					Sand (Add 10 points)							
Surface Pro	tection				Silt/Clay (+ 0: no adjust	ment)						
Surface]											-
Protection				Strat	tification							
(%)	$\int c / c$	10	ENTREME		Add 5-10 points depend	ing on positi	ion of unstab	le layers in re	elation to bar	nkfull stage		
0%				-							2	
Materials:				Tota	I Score							
LOOSE 60	MIEL/SAND	+8			Very Low Low	Moderate	High	Very High	Extreme			
Stratification	1:				5-9.5 10-19.5	20-29.5	30-39.5	40-45	46-50			
Nouls	÷,	+0										
TOTAL SCO	ORE:		+	*	BANKS WER	E NEL	sur co	nostelle	TED \$	OVER	LAINU	+1714
I OTAL SOL		42	V. High		MATUJE. ON	LE VEC	ATATO	N EST	ABLISH	ES BE	HI I	Jul

Total Cross Section									
Bankfull Mean Depth (ft)	Slope	Density of Water (lb/ft ³)	Shear Stress (lb/ft ²)						
1.5	0.0094	62.4	0.88						
d _{bkf}	S	γ	τ						

Near Bank Third							
Bankfull Max Depth (ft)	Slope	Density of Water Ib/ft ³	Shear Stress (lb/ft ²)				
2.7	0.0094	62.4	1.58				
d _{maxnb}	S _{nb}	γ	τ _{nb}				

Near Bank Stress	_	Near Bank Shear Stress (τ_{nb}) =	1.00
Neal Dalik Suess	I Te T	Total Shear Stress (τ)	1.00

Near Bank Stress Range:	0.5 - 1.0	1.01 - 1.50	1.51 - 2.0	2.01 - 2.5	2.51- 3.0	>3.0
Near Bank Stress Rating:	Very Low	Low	Moderate	High	Very High	Extreme

Near Bank Stress Rating	BEHI Rating
MODERATE	VERY HIGH
	6

	-
Bank Erosion Prediction (ft/yr)	0.3

Circle Curve Used:

Yellowstone Colorado Other

	Erod	ibility Varia	ble	Index	Bank Erosion Potential				В	ank Eros	ion Hazar	d Index			
1	Bank Height	/Bankfull He	eight		E I P							Bank Erosi	on Potential		
	Study Bank Height (ft)	Bankfull Height (ft)	A/B	2.0				_		Very Low	Low	Moderate	High	Very High	Extreme
	A	В		3.9	Low		Bank H	leight/	Value	1.0 - 1.1	1.11 - 1.19	1.2 - 1.5	1.6 - 2.0	2.1 - 2.8	>2.8
	7.4	6.2'	1.19				Bankful	Height	Index	1.0 - 1.9	2.0 - 3.9	4.0 - 5.9	6.0 - 7.9	8.0 - 9.0	10
1	Root Depth/	Bank Heigh				le	Root L)epth/	Value	1.0 - 0.9	0.89 - 0.5	0.49 - 0.3	0.29 - 0.15	0.14 - 0.05	<0.05
ſ	Root	14	N			Irial	Bank I	leight	Index	1.0 - 1.9	2.0 - 3.9	4.0 - 5.9	6.0 - 7.9	8.0 - 9.0	10
	Depth (ft)	C/A				2	Weig	hted	Value	100 - 80	79 - 55	54 - 30	29 - 15	14 - 5.0	<5.0
	C		10/	10	EXTREME	liif	Root D	ensity	Index	1.0 - 1.9	2.0 - 3.9	4.0 - 5.9	6.0 - 7.9	8.0 - 9.0	10
I	Olo	0	_)`		1 1	dib	Pank	Angla	Value	0 - 20	21 - 60	61 - 80	81 - 90	91 - 119	>119
1	Weighted Ro	oot Density			6 1 3	ш	Dank	Angle	Index	1.0 - 1.9	2.0 - 3.9	4.0 - 5.9	6.0 - 7.9	8.0 - 9.0	10
ſ	Root		N				Surf	ace	Value	100 - 80	79 - 55	54 - 30	29 - 15	14 - 10	<10
l	Density	D*(C/A)			EXTREME		Prote	ction	Index	1.0 - 1.9	2.0 - 3.9	4.0 - 5.9	6.0 - 7.9	8.0 - 9.0	10
I	(%) D		10/	10											
I	Olo	0	-)'			Bank	Materials							S. 1 - 30	
-	Bank Angle					1	Bedrock (Be	drock banks	have very lo	ow bank eros	sion potentia	I)			
	Bank Angle (degrees) 455°	tection	$ \rightarrow $	3.2	Low		Boulders (Ba Cobble (Sub Gravel (Add Sand (Add 1 Sill/Clay (+ (inks compos tract 10 poir 5-10 points 0 points)	sed of bould its. If sand/g depending o	ers have low ravel matrix n percentage	bank erosio greater than e of bank ma	n potential) 50% of banl Iterial that is	k material, th composed o	en do not ad f sand)	just)
r	Surface	ection			11	L	University (1)	. no aujusti	ient)						
	Protection	-				Strat	lification								-
	(%)	ſ		.0	ENTRENE	Juan	Add 5 10 po	inte dependi	na on nositic	on of unstabl	o lavore in re	lation to bar	kfull stage		
ł	0%			10	Criteme	L		ints dependi	ng on positio	n or unstabl	e layers in re		iktuii staye		
ł	Materials:					Tota	Score								
	ROOTWAD	to wi GRA	NEL	+5			Very Low	Low	Moderate	High	Very High	Extreme			
ŀ	Stratification	:			1		5-9.5	10-19.5	20-29.5	30-39.5	40-45	46-50			
	NO	NE		Ø					100			-			12
	TOTAL SCO	DRE:		101		*	BANKS	NEW	Ly con	struct	ED NE	CETAT	ION NO	5T 4ET	

*

Total Cross Section							
Bankfull Mean Depth (ft)	Slope	Density of Water (Ib/ft ³)	Shear Stress (lb/ft ²)				
2.8	.00016	62.4	6,020 6,28				
d _{bkf}	S	γ	τ				

	Near Ba	nk Third	2.2
Bankfull Max Depth (ft)	Slope	Density of Water Ib/ft ³	Shear Stress (lb/ft ²)
6.2	,00010	62.4	0.062
d _{maxnb}	S _{nb}	γ	τ _{nb}

Near Bank Stress	_	Near Bank Shear Stress (τ_{nb})	-	2.
Near Dark Suess		Total Shear Stress (τ)		3.1

Near Bank Stress Range:	0.5 - 1.0	1.01 - 1.50	1.51 - 2.0	2.01 - 2.5	2.51- 3.0	>3.0
Near Bank Stress Rating:	Very Low	Low	Moderate	High	Very High	Extreme

Near Bank Stress Rating	BEHI Rating
VERY HIGH	VERY HIGH

Bank	Erosion	Prediction
	(ft/y)	7)

0.8

Circle Curve Used:

Yellowstone Colorado Other

6

©Wildland Hydrology 2002

Erodibility Variable Index Erosion Potential			Bank Erosion Hazard Index										
Bank Height	t/Bankfull Height								Bank Erosi	on Potentia			
Study Bank Height (ft)	Bankfull Height (ft) A/B	1	VERY				Very Low	Low	Moderate	High	Very High	Extreme	
A	В	1.0	1000		Bank Height/	Value	1.0 - 1.1	1.11 - 1.19	1.2 - 1.5	1.6 - 2.0	2.1 - 2.8	>2.8	
2.2	2.2 1.0				Bankfull Height	Index	1.0 - 1.9	2.0 - 3.9	4.0 - 5.9	6.0 - 7.9	8.0 - 9.0	10	
Root Depth/	Bank Height			e	Root Depth/	Value	1.0 - 0.9	0.89 - 0.5	0.49 - 0.3	0.29 - 0.15	0.14 - 0.05	<0.05	
Root				riab	Bank Height	Index	1.0 - 1.9	2.0 - 3.9	4.0 - 5.9	6.0 - 7.9	8.0 - 9.0	10	
Depth (ft)	CIA			<a>	Weighted	Value	100 - 80	79 - 55	54 - 30	29 - 15	14 - 5.0	<5.0	
C		10	EXTREME	lity	Root Density	Index	1.0 - 1.9	2.0 - 3.9	4.0 - 5.9	6.0 - 7.9	8.0 - 9.0	10	
0'				dib		Value	0 - 20	21 - 60	61 - 80	81 - 90	91 - 119	>119	
Weighted R	oot Density			L L L L	Bank Angle	Index	1.0 - 1.9	2.0 - 3.9	4.0 - 5.9	6.0 - 7.9	8.0 - 9.0	10	
Root					Surface	Value	100 - 80	79 - 55	54 - 30	29 - 15	14 - 10	<10	
Density	D*(C/A)				Protection	Index	1.0 - 1.9	2.0 - 3.9	4.0 - 5.9	6.0 - 7.9	8.0 - 9.0	10	
(%) D ౦గం Bank Angle				Bank Materials Bedrock (Bedrock banks have very low bank erosion potential)									
Bank Angle (degrees) <u>3</u> ບໍ Surface Pro	tection	2.5	Low		Boulders (Banks compo Cobble (Subtract 10 poi Gravel (Add 5-10 points Sand (Add 10 points) Sill/Clay (+ 0: no adjust	sed of bould nts. If sand/g depending o ment)	lers have low gravel matrix on percentag	bank erosio greater than e of bank ma	n potential) 50% of ban aterial that is	k material, th composed c	en do not ad of sand)	just)	
Surface Protection (%)		10	EXTREME	Stra	tification Add 5-10 points depend	ing on positi	ion of unstabl	e layers in re	elation to ba	nkfull stage			
Materials: LOOSE Stratification	GRAVEL KAND	+ 10	-	Tota	I Score Very Low Low 5-9.5 10-19.5	<i>Moderate</i> 20-29.5	<i>High</i> 30-39.5	Very High 40-45	Extreme 46-50				
~	JUNE	Ø			3.8	1							
TOTAL SCO	ORE:	43.5	Vithart		* NEWLY C	STABL	UCTED LSHED.	BANKS,	1565	TATION	NOT		

.

Total Cross Section									
Bankfull Mean Depth (ft)	Slope	Density of Water (Ib/ft ³)	Shear Stress (lb/ft ²)						
1.1	0, 0217	62.4	(. 49						
d _{bkf}	S	γ	τ						

6 18	Near Ba	ank Third	
Bankfull Max Depth (ft)	Slope	Density of Water lb/ft ³	Shear Stress (lb/ft ²)
2,9	0.0.217	62.4	3.93
d _{maxnb}	S _{nb}	γ	τ _{nb}

Near Bank Stress	_	Near Bank Shear Stress (τ_{nb}) =	0 1.7
		Total Shear Stress (τ)	12.03

Near Bank Stress Range:	0.5 - 1.0	1.01 - 1.50	1.51 - 2.0	2.01 - 2.5	2.51- 3.0	>3.0
Near Bank Stress Rating:	Very Low	Low	Moderate	High	Very High	Extreme

Near Bank Stress Rating	BEHI Rating
VERY HIGH	VERY HIGH
	6

Bank Erosion Prediction							
(ft/yr)							

0.8

Circle Curve Used:

Yellowstone Colorado Other

©Wildland Hydrology 2002

Stream: HA	NUNIDRO	ic cizic	Reach:		(Cross Section: # 4	1		Date: 0	6104	Crew:	MULKE	4
Erodibility Variable Index Erosion Potential			Bank Erosion Hazard Index										
Bank Height	/Bankfull He	eight								Bank Erosi	on Potentia		
Study Bank Height (ft)	Bankfull Height (ft)	A/B						Very Low	Low	Moderate	High	Very High	Extreme
A	В		4.0	MOD.		Bank Height/	Value	1.0 - 1.1	1.11 - 1.19	1.2 - 1.5	1.6 - 2.0	2.1 - 2.8	>2.8
4.000	3.9	1.20		ľ I		Bankfull Height	Index	1.0 - 1.9	2.0 - 3.9	4.0 - 5.9	6.0 - 7.9	8.0 - 9.0	10
Root Depth/	Bank Heigh	t			e	Root Depth/	Value	1.0 - 0.9	0.89 - 0.5	0.49 - 0.3	0.29 - 0.15	0.14 - 0.05	<0.05
Root		N			riat	Bank Height	Index	1.0 - 1.9	2.0 - 3.9	4.0 - 5.9	6.0 - 7.9	8.0 - 9.0	10
Depth (ft)	C/A			VERY	> a	Weighted	Value	100 - 80	79 - 55	54 - 30	29 - 15	14 - 5.0	<5.0
С		$\int \alpha /$	8.5	HIGH	ility	Root Density	Index	1.0 - 1.9	2.0 - 3.9	4.0 - 5.9	6.0 - 7.9	8.0 - 9.0	10 .
0.5	0.113	_)`			dib	Bank Angla	Value	0 - 20	21 - 60	61 - 80	81 - 90	91 - 119	>119
Weighted Ro	oot Density				ш	Dalik Angle	Index	1.0 - 1.9	2.0 - 3.9	4.0 - 5.9	6.0 - 7.9	8.0 - 9.0	10
Root		Ν				Surface	Value	100 - 80	79 - 55	54 - 30	29 - 15	14 - 10	<10
Density	D*(C/A)					Protection	Index	1.0 - 1.9	2.0 - 3.9	4.0 - 5.9	6.0 - 7.9	8.0 - 9.0	10
(%) D 30	3.3		10	EXTREME	Bank Materials								
Bank Angle	1	3		·····		Bedrock (Bedrock bank	s have very I	ow bank eros	sion potentia	1)			
Bank				1 1		Boulders (Banks compo	osed of bould	ers have low	bank erosio	n potential)			
Angle	\int	>	3.3	100		Cobble (Subtract 10 pol	nts. If sand/g	ravel matrix	greater than	50% of bank	k material, th	en do not ad	just)
(degrees)	·	$\int V$		01		Graver (Add 5-10 points)	aepenaing a	on percentage	e of dank ma	iterial that is	composed o	r sand)	
FI.D	tootion			I	Silt/Clay (+ 0: no adjustment)								
Surface				11	Ļ	Silvelay (+ 0. no adjust	ment)						
Protection					Strat	ification							
(%)			7.2	1416114	oura	Add 5-10 points depend	ling on positiv	on of unetabl	e lavere in re	lation to har	kfull stage		
20						Add 5-10 points depend	ing on position		e layers in re	nation to bar	ikiuli stage		
Materials:					Tota	Score			5				
GROU	KLISAN	Cic.	+'1		1	Very Low Low	Moderate	High	Very High	Extreme			
Stratification	:					5-9.5 10-19.5	20-29.5	30-39.5	40-45	46-50			
	NON	JE	×Ф							100			
TOTAL SCO	TOTAL SCORE: 40 V. Halt												

4

*

Total Cross Section									
Bankfull Mean Depth (ft)	Slope	Density of Water (lb/ft ³)	Shear Stress (lb/ft ²)						
2.0	0.0005	62.4	0.0024						
d _{bkf}	S	γ	τ						

	Near Ba	ank Third	
Bankfull Max Depth (ft)	Slope	Density of Water lb/ft ³	Shear Stress (lb/ft ²)
3.9	0.0005	62.4	0,122
d _{maxnb}	S _{nb}	γ	τ _{nb}

Near Bank Stress	_	Near Bank Shear Stress (τ_{nb})	-	105
		Total Shear Stress (τ)		1,95

Near Bank Stress Range:	0.5 - 1.0	1.01 - 1.50	1.51 - 2.0	2.01 - 2.5	2.51- 3.0	>3.0
Near Bank Stress Rating:	Very Low	Low	Moderate	High	Very High	Extreme

Near Bank Stress Rating	BEHI Rating
MODERATE-	VERY HIGH

Bank Erosion Prediction	
(ft/yr)	

0.3

Circle Curve Used:

Yellowstone Colorado Other

©Wildland Hydrology 2002

Stream: 1-1 p	NENDERCON	Reach:		(Cross Section: #	5		Date: 101	4010	Crew: A	AULKEY	
Erod	libility Variable	Index	Bank Erosion Potential			E	Bank Eros	ion Hazar	d Index			
Bank Height	t/Bankfull Height								Bank Erosi	on Potentia	l	
Study Bank Height (ft)	Bankfull Height (ft) A/B						Very Low	Low	Moderate	High	Very High	Extreme
A	В	5.0	MOD.		Bank Height/	Value	1.0 - 1.1	1.11 - 1.19	1.2 - 1.5	1.6 - 2.0	2.1 - 2.8	>2.8
5.17	3.8 1.34				Bankfull Height	Index	1.0 - 1.9	2.0 - 3.9	4.0 - 5.9	6.0 - 7.9	8.0 - 9.0	10
Root Depth/	Bank Height			e	Root Depth/	Value	1.0 - 0.9	0.89 - 0.5	0.49 - 0.3	0.29 - 0.15	0.14 - 0.05	<0.05
Root		N		Iriat	Bank Height	Index	1.0 - 1.9	2.0 - 3.9	4.0 - 5.9	6.0 - 7.9	8.0 - 9.0	10
Depth (ft)	C/A			2	Weighted	Value	100 - 80	79 - 55	54 - 30	29 - 15	14 - 5.0	<5.0
C		17.5	1416-14	oilith	Root Density	Index	1.0 - 1.9	2.0 - 3.9	4.0 - 5.9	6.0 - 7.9	8.0 - 9.0	10 .
1.0	0.20	r		dib	Bank Angle	Value	0 - 20	21 - 60	61 - 80	81 - 90	91 - 119	> 1 19
Weighted R	oot Density			ш	Dank Angle	Index	1.0 - 1.9	2.0 - 3.9	4.0 - 5.9	6.0 - 7.9	8.0 - 9.0	10
Root		N			Surface	Value	100 - 80	79 - 55	54 - 30	29 - 15	14 - 10	<10
Density	D*(C/A)		VERY	IERY	Protection	Index	1.0 - 1.9	2.0 - 3.9	4.0 - 5.9	6.0 - 7.9	8.0 - 9.0	10
(%) D		V 8.0	HIGH									
10%	14			Bank	Materials							-
Bank Angle				1	Bedrock (Bedrock bank	ks have very l	ow bank eros	sion potentia	I)			
Bank	1			1	Boulders (Banks comp	osed of bould	ers have low	bank erosio	n potential)			
Angle		3.0	100	0	Cobble (Subtract 10 pc	oints. If sand/g	gravel matrix	greater than	50% of ban	k material, th	en do not ad	just)
(degrees)		1 11			Gravel (Add 5-10 point	s depending o	on percentag	e of bank ma	aterial that is	composed of	of sand)	
38	1.5			1	Sand (Add 10 points)							
Surface Pro	tection			1	Silt/Clay (+ 0: no adjus	tment)					6	
Surface					39							
Protection			1	Strat	lification							
(%)		1 2.2	Low	1	Add 5-10 points depen	ding on positi	on of unstabl	e layers in re	elation to bar	nkfull stage		
10%												
Materials:				Tota	I Score							
CUBBLE/	GRAVELI SAND	+6			Very Low Low	Moderate	High	Very High	Extreme			
Stratification	1:				5-9.5 10-19.5	20-29.5	30-39.5	40-45	46-50			
N	UNE	+0							2			
TOTAL SCO	DRE:	31.7	HIGH									

@Wildland Hydrology

*

Total Cross Section							
Bankfull Mean Depth (ft)	Siope	Density of Water (lb/ft ³)	Shear Stress (lb/ft ²)				
2.5	0,00063	62.4	0.0975				
d _{bkf}	S	γ	τ				

	Near Ba	nk Third	
Bankfull Max Depth (ft)	Slope	Density of Water Ib/ft ³	Shear Stress (lb/ft ²)
3.8	6,00003	62.4	0.148
d _{maxnb}	S _{nb}	γ	τ _{nb}

Near Bank Stress	-	Near Bank Shear Stress (τ_{nb})	1-2
Neal Dalik Suess		Total Shear Stress (τ)	1.50

Near Bank Stress Range:	0.5 - 1.0	1.01 - 1.50	1.51 - 2.0	2.01 - 2.5	2.51- 3.0	>3.0
Near Bank Stress Rating:	Very Low	Low	Moderate	High	Very High	Extreme

Near Bank Stress Rating	BEHI Rating
MODERATE	HIGH
	6

	1
Bank Erosion Prediction	
(ft/yr)	

0.3

Circle Curve Used:

Yellowstone Colorado Other

©Wildland Hydrology 2002

Stream: 144	NonNi-Rock CRK	Reach:			Cross Section: # (٩		Date: 10	UIDA	Crew: r	MUKEY	
Erod	libility Variable	Index	Bank Erosion Potential			E	ank Eros	ion Hazar	d Index			
Bank Height	t/Bankfull Height								Bank Erosi	on Potentia		
Study Bank Height (ft)	Bankfull Height (ft) A/B						Very Low	Low	Moderate	High	Very High	Ext r eme
A	В	2.5	LOW		Bank Height/	Value	1.0 - 1.1	1.11 - 1.19	1.2 - 1.5	1.6 - 2.0	2.1 - 2.8	>2.8
2,15	1.9 1.13	1			Bankfull Height	Index	1.0 - 1.9	2.0 3.9	4.0 - 5.9	6.0 - 7.9	8.0 - 9.0	10
Root Depth/	Bank Height			e	Root Depth/	Value	1.0 - 0.9	0.89 - 0.5	0.49 - 0.3	0.29 - 0.15	0.14 - 0.05	<0.05
Root	N			riat	Bank Height	Index	1.0 - 1.9	2.0 - 3.9	4.0 - 5.9	6.0 - 7.9	8.0 - 9.0	10
Depth (ft)	C/A			No.	Weighted	Value	100 - 80	79 - 55	54 - 30	29 - 15	14 - 5.0	<5.0
С		14.1	MOD	lity	Root Density	Index	1.0 - 1.9	2.0 - 3.9	4.0 - 5.9	6.0 - 7.9	8.0 - 9.0	10 .
1.0'	0.47			dib	Bank Angle	Value	0 - 20	21 - 60	61 - 80	81 - 90	91 - 119	>119
Weighted Re	oot Density			ш	Balik Angle	Index	1.0 - 1.9	2.0 - 3.9	4.0 - 5.9	6.0 - 7.9	8.0 - 9.0	10
Root	N				Surface	Value	100 - 80	79 - 55	54 - 30	29 - 15	14 - 10	<10
Density	D*(C/A)				Protection	Index	1.0 - 1.9	2.0 - 3.9	4.0 - 5.9	6.0 - 7.9	8.0 - 9.0	10
(%) D 90% Bank Angle	42.3	5.0	moi2.	Bank Materials					·			
Bank Angle (degrees) II. 4° Surface Pro	tection	1.5	VERY LOW		Boulders (Banks composed Cobble (Subtract 10 poir Gravel (Add 5-10 points Sand (Add 10 points) Silt/Clay (+ 0: no adjustn	sed of bould nts. If sand/g depending o nent)	ers have low pravel matrix on percentag	bank erosion greater than e of bank ma	/ n potential) 50% of bank terial that is	< material, th composed o	en do not adj f sand)	ust)
Protection (%)		1.5	VERY	Strat	tification Add 5-10 points dependi	ng on positio	on of unstabl	e layers in re	lation to bar	kfull stage		
Materials: GRANE Stratification	CISAND CONE	+6	-	Tota	I Score Very Low Low 5-9.5 10-19.5	Moderate 20-29.5	High 30-39.5	Very High 40-45	Extreme 46-50			
TOTAL SCO	DRE:	20.6	ciom									

4

*

Total Cross Section								
Bankfull Mean Depth (ft)	Slope	Density of Water (lb/ft ³)	Shear Stress (lb/ft ²)					
1.0 0.0076		62.4	0.474					
d _{bkf}	S	γ	τ					

Near Bank Third								
Bankfull Max Depth (ft)	Slope	Density of Water lb/ft ³	Shear Stres (Ib/ft ²)					
1.9	0.0076	62.4	0.901					
d _{maxnb}	S _{nb}	γ	τ _{nb}					

Near Bank Stress	-	Near Bank Shear Stress (τ_{nb})	-	10
Near Dalik Stress		Total Shear Stress (τ)		1,91

Near Bank Stress Range:	0.5 - 1.0	1.01 - 1.50	1.51 - 2.0	2.01 - 2.5	2.51- 3.0	>3.0
Near Bank Stress Rating:	Very Low	Low	Moderate	High	Very High	Extreme

Near Bank Stress Rating	BEHI Rating
MODERATE	MUDERATE
2	5
Bank Erosion Prediction (ft/yr)	0.2

Circle Curve Used:

Yellowstone Colorado Other

©Wildland Hydrology 2002

Erod	libility Varia	able	Index	Erosion Potential			E	Bank
Bank Height	t/Bankfull He	eight						
Study Bank Height (ft)	Bankfull Height (ft)	A/B						Very
A	B	,,,,,	4.9	MOD.		Bank Height/	Value	1.0
2.4	1.7	1,41				Bankfull Height	Index	1.0
Root Depth/	Bank Heigh	t			le	Root Depth/	Value	1.0
Root					riat	Bank Height	Index	1.0
Depth (ft)	C/A				Va	Weighted	Value	100
С		$ \alpha /$	3.3	LOW	liity	Root Density	Index	1.0
1.5'	0.025	-)'			dib	Pank Angla	Value	0 -
Weighted R	oot Density				ш	Bank Angle	Index	1.0
Root		N				Surface	Value	100
Density	D*(C/A)					Protection	Index	1.0
(%) D			3.8	LOW				
90%0	56.3	-)			Bank	Materials		
Bank Angle					E	Bedrock (Bedrock bank	s have very l	ow bar
Bank	1	Ν			E	Boulders (Banks compo	sed of bould	ers ha
Angle		/		VERY	0	Cobble (Subtract 10 poi	nts. If sand/g	ravel r
(degrees)		\square	1.8	Low	0	Fravel (Add 5-10 points	depending o	n perc
18.8) /			S	and (Add 10 points)		
Surface Pro	tection				S	Silt/Clay (+ 0: no adjust	ment)	
Surface		Ν						
Protection	1	/		VERY	Strat	fication		
(%)		\square	1.5	Low	A	dd 5-10 points depend	ling on positio	on of u
90%) /						
Materials:			> -		Total	Score		
GRAVELI	SAND		+ 5		V	ery Low Low	Moderate	Hi
Stratification	1:		,	1		5-9.5 10-19.5	20-29.5	30-
N	JUNE		τØ				1	
TOTAL SCO	ORE:		20.3	MoD				
			20.3					

Bank

	Bank Erosion Potential								
		Very Low	Low	Moderate	High	Very High	Extreme		
Bank Height/	Value	1.0 - 1.1	1.11 - 1.19	1.2 - 1.5	1.6 - 2.0	2.1 - 2.8	>2.8		
Bankfull Height	Index	1.0 - 1.9	2.0 - 3.9	4.0 - 5.9	6.0 - 7.9	8.0 - 9.0	10		
Root Depth/	Value	1.0 - 0.9	0.89 - 0.5	0.49 - 0.3	0.29 - 0.15	0.14 - 0.05	<0.05		
Bank Height	Index	1.0 - 1.9	2.0 + 3.9	4.0 - 5.9	6.0 - 7.9	8.0 - 9.0	10		
Weighted	Value	100 - 80	79 - 55	54 - 30	29 - 15	14 - 5.0	<5.0		
Root Density	Index	1.0 - 1.9	2.0 - 3.9	4.0 - 5.9	6.0 - 7.9	8.0 - 9.0	10		
Bank Angla	Value	0 - 20	21 - 60	61 - 80	81 - 90	91 - 119	>119		
Bank Angle	Index	1.0 - 1.9	2.0 - 3.9	4.0 - 5.9	6.0 - 7.9	8.0 - 9.0	10		
Surface	Value	100 - 80	79 - 55	54 - 30	29 - 15	14 - 10	<10		
Protection	Index	1.0 - 1.9	2.0 - 3.9	4.0 - 5.9	6.0 - 7.9	8.0 - 9.0	10		

Date: 10/11/04 Crew: MULIKEY

nk erosion potential)

ve low bank erosion potential)

matrix greater than 50% of bank material, then do not adjust)

centage of bank material that is composed of sand)

unstable layers in relation to bankfull stage

Total Score					
Very Low	Low	Moderate	High	Very High	Extreme
5-9.5	10-19.5	20-29.5	30-39.5	40-45	46-50

Stream: HANGING COUR CER Reach:

*

Cross Section: サ ワ

Total Cross Section							
Bankfull Mean Depth (ft)	Slope	Density of Water (lb/ft ³)	Shear Stress (lb/ft ²)				
1.3	0.0044	62.4	0.351				
d _{bkf}	S	γ	τ				

Near Bank Third						
Bankfull Max Depth (ft)	Slope	Density of Water Ib/ft ³	Shear Stress (Ib/ft ²)			
1.7	0.0044	62.4	0.467			
d _{maxnb}	Snb	γ	τ _{nb}			

Near Bank Stress	-	Near Bank Shear Stress (τ_{nb})	-	1.21
Neal Dalik Stless	-	Total Shear Stress (τ)		1.51

Near Bank Stress Range:	0.5 - 1.0	1.01 - 1.50	1.51 - 2.0	2.01 - 2.5	2.51- 3.0	>3.0
Near Bank Stress Rating:	Very Low	Low	Moderate	High	Very High	Extreme

BEHI Rating
Low/mor.

Bank Frosion Prediction	
(ft/yr)	

0.09

Circle Curve Used:

Yellowstone Colorado Other

6

©Wildland Hydrology 2002

Stream: UT to	HANGING	lak Ce	Reach	1:
---------------	---------	--------	-------	----

Cross Section: # ム

Date: 10)u

X.

Date: 10/11/04 Crew: MULKEY

*

Erod	ibility Varia	Index	Erosion Potential	
Bank Height	/Bankfull He	eight		
Study Bank	Bankfull			
Height (ft)	Height (ft)	A/B		
A	В		4.5	High
1,9	1.1	1.73		
Root Depth/	Bank Heigh	t		
Root		N		
Depth (ft)	C/A		2 - 2	
С			3.4	Low
1.0	0.52			
Weighted Ro	oot Density			
Root		N		
Density	D*(C/A)		Λ.	
(%) D			4.0	MOD
90%	47.4			
Bank Angle				
Bank		Ν		
Angle	-		2 1	
(degrees)	ſ	\square	2.1	Low
320		, v		
Surface Prot	tection			
Surface		N		
Protection	-			NERY
(%)	ſ	\neg	1.1	1000
95%				
Materials:				
GRAVEL	SAND (X-	+ Lp		
Stratification	:			
NO	SUR		+0	
TOTAL SCO	DRE:		DAL	0000
			24.4	mou.

_					Bank Erosi	on Potential		
			Very Low	Low	Moderate	High	Very High	Extreme
	Bank Height/	Value	1.0 - 1.1	1.11 - 1.19	1.2 - 1.5	1.6 - 2.0	2.1 - 2.8	>2.8
	Bankfull Height	Index	1.0 - 1.9	2.0 - 3.9	4.0 - 5.9	6.0 - 7.9	8.0 - 9.0	10
şΓ	Root Depth/	Value	1.0 - 0.9	0.89 - 0.5	0.49 - 0.3	0.29 - 0.15	0.14 - 0.05	<0.05
	Bank Height	Index	1.0 - 1.9	2.0 - 3.9	4.0 - 5.9	6.0 - 7.9	8.0 - 9.0	10
	Weighted	Value	100 - 80	79 - 55	54 - 30	29 - 15	14 - 5.0	<5.0
	Root Density	Index	1.0 - 1.9	2.0 - 3.9	4.0 - 5.9	6.0 - 7.9	8.0 - 9.0	10
	Bank Angle	Value	0 - 20	21 - 60	61 - 80	81 - 90	91 - 119	>119
	Darik Angie	Index	1.0 - 1.9	2.0 - 3.9	4.0 - 5.9	6.0 - 7.9	8.0 - 9.0	10
	Surface	Value	100 - 80	79 - 55	54 - 30	29 - 15	14 - 10	<10
	Protection	Index	1.0 - 1.9	2.0 - 3.9	4.0 - 5.9	6.0 - 7.9	8.0 - 9.0	10

Bank Materials

Bedrock (Bedrock banks have very low bank erosion potential)

Boulders (Banks composed of boulders have low bank erosion potential)

Cobble (Subtract 10 points. If sand/gravel matrix greater than 50% of bank material, then do not adjust)

Gravel (Add 5-10 points depending on percentage of bank material that is composed of sand)

Sand (Add 10 points)

Silt/Clay (+ 0: no adjustment)

Stratification

Add 5-10 points depending on position of unstable layers in relation to bankfull stage

Total Score				0	
Very Low	Low	Moderate	High	Very High	Extreme
5-9.5	10-19.5	20-29.5	30-39.5	40-45	46-50

	Total Cros	ss Section	
Bankfull Mean Depth (ft)	Slope	Density of Water (lb/ft ³)	Shear Stress (lb/ft ²)
0.17	.011	62.4	0.48
d _{bkf}	S	γ	τ

Near Bank Third								
Bankfull Max Depth (ft)	Slope	Density of Water lb/ft ³	Shear Stress (lb/ft ²)					
1.1	,011	62.4	0.74					
d _{maxnb}	S _{nb}	γ	τ _{nb}					

Near Bank Stress =	_	Near Bank Shear Stress (τ_{nb})		1.50
		Total Shear Stress (τ)		1.50

Near Bank Stress Range:	0.5 - 1.0	1.01 - 1.50	1.51 - 2.0	2.01 - 2.5	2.51- 3.0	>3.0
Near Bank Stress Rating:	Very Low	Low	Moderate	High	Very High	Extreme

Near Bank Stress Rating	BEHI Rating
MODERATE	MODERATE
2	5

Bank Erosion	Prediction
(ft/v	r)

0.2

Circle Curve Used:

Yellowstone Colorado Other APPENDIX C

SITE PHOTOGRAPHS

Photo Points: Hanging Rock Creek

Photo Points: Hanging Rock Creek (continued)

Hanging Rock Creek Photos

Hanging Rock Creek Photos (continued)

